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Introduction

The goal of this document is to convey a broad view of how
graph parameter estimation via random sampling might be studied. I
use the word “might” because this note does not properly survey the
literature, nor does it even claim to be correct. Rather, it reflects how
I have come to view this subject based on some light reading, and
can perhaps provide perspective for exploration of related problems.
Thus, the ensuing discussion will be fairly high-level, rather than
focusing in on particular (useful!) constructions and ideas in graph
parameter estimation. In some sense, everything I say here may be
quite obvious to the probabilistically-inclined, but maybe less trivial
to those in machine learning or network science.

Essentially, this document will describe how random sampling
procedures induce a pseudometric on the set of graph isomorphism
classes, and how that pseudometric can be used to study the es-
timability of graph parameters. Although some of the developments
might seem a bit tricky, the big idea is to show that a parameter
being estimable under a random sampling model is equivalent to
uniform continuity in the induced metric. Moreover, reasonable as-
sumptions on the sampling model will result in this metric space
being compact, so that uniform continuity is equivalent to continuity.
I will assume a general understanding of how ε-bashing is done in
basic analysis on metric spaces, but will provide gentle reminders of
definitions for concepts such as compactness, sequential compact-
ness, uniform continuity, and so on. One should of course consult
their favorite resource on introductory real analysis for a better re-
view of these topics.

Graph Parameters and the Estimation Thereof

We are concerned with computing summaries of large graphs,
also known as graph parameters. That is to say,



some half-baked thoughts on graph sampling and parameter estimation 2

Definition 1. Let G be the set of all graphs. A graph parameter is a map
p : G → R such that for any isomorphic X, Y ∈ G, we have p(X) = p(Y).
That is to say, p is a function on the isomorphism classes in G.

Example 1. The number of connected
components in a graph.

Example 2. The average node degree,
given by twice the number of edges divided
by the number of nodes. Similarly, the
edge density, approximately given by the
number of edges divided by the number of
nodes squared.

Example 3. The global clustering
coefficient, which measures how likely a set
of three nodes connected by a “path” is to be
closed. This is a measure of transitivity, in
the form of a probability.

Graph parameters are closely related to graph properties, such as
the property of being k-regular or bipartite. A graph property can
be envisioned as a graph parameter that happens to only take values
0, 1. However, the nature of an estimate for a graph property requires
a binary output (perhaps coupled with a probability), while graph
parameter estimation allows for arbitrary real-valued output.

To motivate the estimation of graph parameters, let us consider
Example 1: the number of connected components of a graph. For a
graph on n nodes and m edges, the number of connected components
can (pretty much) be counted in O(n + m) time. That is, if you allow
for an arbitrarily large graph, an exact calculation of the number
of connected components can take a corresponding arbitrarily long
time. To get around this, one may wish to sample a subgraph of size
much smaller than the original, perhaps on some constant number
of nodes. Then, by examining this random subgraph, one forms an
estimate of the number of connected components. If the sampled
subgraph is indeed of fixed size, such an algorithm has a runtime
independent of the size of the original graph. This clearly is not
an exact computation, but the question remains: is it even a good
approach? It isn’t: to see this, observe that for some bound n on the
number of nodes in the sampled subgraph, there are 2n2

different
graphs that can be sampled. However, the input graphs can be made
arbitrarily large, with a corresponding arbitrarily large number of
connected components. Since any sampling procedure will certainly
not be injective, two graphs with significantly different numbers
of connected components will necessarily be mapped to the same
small graph. In this case, any estimator will fail to distinguish them,
despite the vast difference in their parameters.

Other parameters are more reasonably estimated by constant-time
sampling, though. In Example 2, one could quite easily envision a
constant-sized subsample of a large graph being a reasonable way to
estimate the average node degree, particularly under extra assump-
tions on the structure of the graph (for instance, bounded degree
nodes). This points to some difference between parameters that re-
semble densities or averages across the graph, and those that are
more fragile in the context of the graph’s global structure. In the re-
mainder of this document, we will form some ways to understand
this difference, giving a precise meaning to what this fragility really
is.
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What do We Mean by “Constant Time?”

When randomly subsampling a graph, one can consider a com-
putational model for how subgraphs are drawn. In particular, such a
model will involve some number of queries, each with an associated
computational cost, such as:

1. Select a node v from the graph uniformly at random: O(1).

2. Given a node v, return the set of nodes in its neighborhood:
O(dv).

3. Given two nodes u, v, return whether or not they are adjacent:
O(1).

4. Given a node v, randomly sample one of its neighbors: O(1).

A sampling algorithm, then, performs a sequence of such queries in a
way designed to yield a subgraph that can be used to estimate graph
parameters.

Some examples of sampling algorithms.

Example 4. Randomly sample a node v
(O(1)), then return the subgraph induced
by v and its neighborhood (O(dv) to get the
neighborhood, then O(d2

v) to check all pairs
of nodes for edges). This algorithm has a
worst-case runtime O(d2

max), where dmax is
the maximum degree of the graph.

Example 5. Randomly sample a node
v (O(1)), then perform a random walk
for k steps (O(k)). Return the subgraph
induced by the set of visited nodes (O(k2)).
This algorithm has a worst-case runtime of
O(k2).

See Example 4 and Example 5 in the margin for examples of ran-
dom sampling algorithms, with corresponding runtimes. In particu-
lar, we see that Example 4 has a runtime dependant on the maximum
degree of the graph, which is strictly bounded by n in the set of all
possible graphs (consider the complete graphs Kn). However, if one
considers the set of graphs with bounded degree, then this runtime
is asymptotically independent of the graph size: we say that it is a
constant time algorithm in this case.

On the other hand, Example 5 has runtime determined by the
depth k of the random walk. If k is chosen independently of the
graph size n, then this approach is a constant time algorithm for any
graph, not just those with some regularity condition such as having
bounded degree.

Observe that under this computational model for sampling, con-
stant time algorithms yield graphs of bounded size. Since we do
not consider decorated graphs, e.g., with weighted edges, the set of
possible sampled graphs is finite in this case. For this reason, not
only does the sampling procedure run in constant time, but so does
any estimation procedure. That is to say, if we denote some constant
time sampling procedure by S , and a graph parameter estimator by
p̂ : Ima(S) → R, the procedure p̂ ◦ S has a runtime that is asymp-
totically independent of the input graph’s size. For instance, we can
allow a given graph G to be arbitrarily large, but S(G) will always be
bounded in size. This allows for p̂ to run in constant time as well.

We can now state the object of study of this document. Let Σ be a
subset of the isomorphism classes of graph, e.g., all graphs of degree
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bounded by some d. Let S be a random sampling algorithm that
runs in constant time on graphs in Σ, and denote the set of possible
outputs by Σ′. For some graph parameter p : Σ → R, we want to find
an estimator p̂ : Σ′ → R such that the diagram pictured in Figure 1

“approximately commutes.”

Σ Σ′

R

S

p p̂

Figure 1: Diagram illustrating the
estimation of a graph parameter p via
a sampling algorithm S followed by an
estimator p̂.

The Metric of a Sampling Algorithm

An implicit hypothesis in the application of a constant time sam-
pling algorithm is that a graph parameter can be well understood by
a small subgraph. Thus, two graphs with similar statistical properties
in terms of their small subgraphs ought to have similar parameters
as well. In this section, we will use this idea as a way to describe a
metric on a class of graphs determined by a sampling algorithm. To
ground this, we will first consider the sampling of bandlimited sig-
nals as a motivating analogy to the study of random graph sampling.

Shannon-Nyquist Sampling x

Figure 2: The ambiguity present in
sub-Nyquist sampling. Observe that in
this case, the two functions in L2[0, 1]
have the same set of samples, due to the
fact that sub-Nyquist sampling is not
bijective. Thus, the sampling map can’t
induce a proper metric on L2[0, 1], since
there are distinct points in the space
that it fails to distinguish.

Consider square-integrable real-valued functions on the interval:
L2[0, 1]. Denote by L2

B[0, 1] the subspace of L2[0, 1] consisting of
B-bandlimited functions. The sampling theorem says that taking
equispaced samples of a function f ∈ L2

B[0, 1] over 2B points will
“preserve all of the information” of that function, so that f can be
reconstructed from its samples. One can also interpret this by saying
that any f , g ∈ L2

B[0, 1] can be distinguished by the sampled vector,
lying in R2B. In the class of bandlimited functions, if two functions
have the same set of samples, then they must be equal.

Denote the Shannon-Nyquist sampling map by S : L2
B[0, 1] → R2B.

For any function p : L2
B[0, 1] → R, there exists an estimator p̂ : R2B →

R such that p̂ ◦ S = p. This is great news: any parameter on the space
of bandlimited functions can be computed exactly from its samples.

However, in the case of sub-Nyquist sampling, there exist two
functions f , g ∈ L2

B[0, 1] such that f 6= g and S( f ) = S(g). If p is such
that p( f ) 6= p(g), then it is impossible to compute p from the samples
of a function.

In this case, the sampling map has induced a pseudometric d on
the space L2

B[0, 1]. If p is such that d( f , g) = 0 implies p( f ) = p(g),
then p can be recovered from the samples of a function. However, if
this condition is not met, there will always be ambiguity present.
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Graph Sampling

With a general idea of what sampling is, we are now ready to discuss
how some of these ideas might port over to random graph sam-
pling. Throughout, Σ will denote some set of isomorphism classes
of graphs, such as those with maximum degree bounded by d. We
will also assume that we have some constant-time random sampler
S : Σ → Σ′, where Σ′ is just the image of Σ under S . It could very
well be that Σ′ is a subset of Σ, or perhaps Σ′ is some abstract dis-
crete set, or maybe each element of Σ′ is some element of Σ′ plus
some extra information. Either way, the constant-time assumption of
S will generally tell us that Σ′ is a finite set.

Given that S is a random sampling algorithm, it is not quite correct
to characterize it as a map from Σ to Σ′. Rather, it maps elements of
Σ to distributions on Σ′. Denoting the set of all probability distribu-
tions on Σ′ by ΠΣ′, we define a random sampling map as follows:

Definition 2. Let Σ be a set of graph isomorphism classes, and Σ′ some
finite set. A random sampling map S from Σ to Σ′ is a function

S : Σ→ ΠΣ′. (1)

In practice, one would apply the map S , then draw a sample from
the resultant distribution.

a

b

c d

e

f

ghi

j

Σ′
a

b

cd

e

f g

h

i

j
Figure 3: The distribution yielded by
the following sampling algorithm:
“pick a node uniformly at random,
then return the induced subgraph of its
neighborhood.” For bounded-degree
graphs, this algorithm runs in constant
time, as discussed before.

By viewing sampling algorithms as functions that yield distribu-
tions, rather than a single random sample, we can evaluate how well
a parameter can be estimated in a probabilistic sense. Moreover, we
can use this space of distributions to induce a pseudometric on Σ.

Definition 3. Let X be a set. Consider a
function d : X × X → R such that for
every x, y, z ∈ X,

1. If x = y, then d(x, y) = 0

2. d(x, y) = d(y, x)

3. d(x, z) ≤ d(x, y) + d(y, z)

Under these conditions, we say that d is
a pseudometric on X, and that (X, d)
is a pseudometric space. Note that the
definition of a pseudometric space is a slight
relaxation of the familiar notion of a metric
space, in which we allow distinct elements
to be indistinguishable: that is, we allow
d(x, y) = 0 for x 6= y. If we strengthen
the first requirement to an if-and-only-if
statement, then d is called a metric on X,
and (X, d) is a metric space.

We will proceed in the following way. First, we will define a metric
on ΠΣ′. Then, we will pull said metric back via S , thus forming a
pseudometric on Σ. This pseudometric will then establish the degree
to which two graphs can be discerned by S in a probabilistic sense.

Since Σ′ is a finite set, we can easily consider the total variation
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distance on ΠΣ′. Define the metric

d1 : ΠΣ′ ×ΠΣ′ → R

(λ, µ) 7→ 1
2 ∑

x∈Σ′
|λ(x)− µ(x)|.

(2)

One can check that d1 is indeed a metric on ΠΣ′. It is also a natural
choice for a metric, as it describes the “overlap” between two distri-
butions quite well. Of course, two identical distributions will have a
total variation distance of zero. Additionally, two distributions will
have a total variation distance of one if and only if they have disjoint
support. In general, the total variation distance lies in the interval
[0, 1], and measures the total overlapping “area” between the two
distributions1. 1 The observant reader might notice that

the total variation distance resembles a
1-norm on Rn. One can define similar
metrics in analogy to p-norms, and
even ∞-norms. However, all such
metrics on ΠΣ′ turn out to be strongly
equivalent, and thus will turn out to not
matter for our later discussion. Worry
not: this will be noted again later!

Given a suitable metric on ΠΣ′, we will now pull it back by S to
define a pseudometric on Σ2. Abusing notation a bit, this yields a

2 At this point I’m just being pompous
in my vocabulary: pulling d1 back by
S is just a fancy way of saying that we
compose the two functions.

pseudometric on Σ:

S∗d1 : Σ× Σ→ R

(K, L) 7→ d1(S(K),S(L)).
(3)

This is not necessarily a metric on Σ, since two graphs in Σ may have
the same value under the map S : these two graphs would then be
indiscernible by S . Referring back to our earlier example regarding
Shannon-Nyquist sampling, this is analogous to two signals having
the same set of samples due to sampling at sub-Nyquist rates. In the
case of two graphs having a small distance S∗d1, their corresponding
distributions on Σ′ have substantial overlap. Thus, in a probabilistic
sense, it will be difficult to form a good estimator to distinguish them
as well, since the sampling map has a high chance of yielding the
same object in Σ′ for both of them.

That is to say, if two graphs have very small distance S∗d1, then
the parameter p can only be estimated with reasonable accuracy if it
takes a similar value on both graphs. We formalize this idea in the
next section.

Continuity of Graph Parameters

Looking back at graph parameters: a graph parameter for Σ is
simply a map p : Σ → R. Based on our developments, the use of of
a random sampling algorithm induces a pseudometric on Σ via the
pullback of the total variation distance by the sampling map. That is
to say, p is a map from a pseudometric space to the real numbers: we
can thus study its continuity properties, drawing conclusions about
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its estimability along the way. One such result will pertain directly to
Example 1: as a sneak peek, we state it here.

Proposition. (Informal) There exists no constant time sampling algorithm
on G such that the number of connected components can be estimated uni-
formly well.

As we will see, the proof will be hardly graph-theoretic at all.
Indeed, by forming an appropriate pseudometric on G, it follows
quite simply by basic arguments from analysis on metric spaces.

Let us continue with our investigation of the pseudometric space
(Σ,S∗d1). In particular, we have the following convenient fact at our
disposal.

Proposition 1. The pseudometric space (Σ,S∗d1) is compact. Therefore,
any ε-continuous map p : Σ → R is also (ε, δ)-uniformly continuous, for
some δ > 03. 3 Two metrics on a set are strongly

equivalent if uniform continuity of a
function with respect to one metric
always implies uniform continuity
in the other. For any total variation
distance based on a higher-powered
norm, the resulting metric is equivalent
to S∗d1, so we can safely ignore all of
these cases.

The following definition can be found
in any basic textbook on analysis on
metric spaces, or perhaps in point-set
topology.

Definition 4. A pseudometric space (X, d)
is compact if it is closed and bounded.
Equivalently, every sequence of points
{xj}∞

j=1 in X has a subsequence {xjk}
∞
k=1

that converges to a point x ∈ X.

We define a notion of continuity
that we find convenient for handling
functions on pseudometric spaces.

Definition 5. Let (X, d) be a pseudometric
space. A map p : X → R is ε-continuous
at a point x ∈ X if there exists a δ > 0
such that for each y ∈ X, d(x, y) < δ
implies |p(x) − p(y)| < ε. If p is ε-
continuous at all points in X, we say that p
is ε-continuous.

If there exists a δ > 0 such that for all
x ∈ X, d(x, y) < δ implies |p(x) −
p(y)| < ε, then we say that p is (ε, δ)-
uniformly continuous. Note that for
pseudometric spaces, it is meaningful
to speak of (ε, 0)-uniformly continuous
functions.

With the proper definitions and basic results in place, we are now
ready to put forth the primary expression of this document. We wish
to characterize the existence of an estimator p̂ : Σ′ → R such that
p ≈ p̂ ◦ S with sufficiently large probability. Dwell on the following
definition, which formalizes this notion.

Definition 6. A parameter p : Σ → R is said to be ε-estimable under a
random sampling map S : Σ→ ΠΣ′ if there exists an estimator p̂ : Σ′ → R

such that for all K ∈ Σ, we have

P {|p(K)− p̂(S(K))| < ε} > 1− ε. (4)

In this case, we say that p̂ is an ε-estimator for p under S .

After all of this trouble, we arrive at a nice statement characteriz-
ing ε-estimable functions under a random sampling map S : Σ →
ΠΣ′.

Theorem 1. A parameter p : Σ → R is ε-estimable under a random
sampling map S : Σ → ΠΣ′ only if it is (2ε, 1− 2ε)-uniformly continuous
with respect to the metric S∗d1.

Proof. Suppose p̂ : Σ′ → R is an ε-estimator for p under S . Suppose,
for the sake of contradiction, that p is not (2ε, 1 − 2ε)-uniformly
continuous with respect to S∗d1, so that there exists K, L ∈ Σ such
that S∗d1(K, L) < 1− 2ε and |p(K)− p(L)| > 2ε.

By the hypothesis on p̂, we have that

P {|p(K)− p̂(S(K))| < ε} > 1− ε

P {|p(L)− p̂(S(L))| < ε} > 1− ε.
(5)
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Put ΨK = p̂−1(Bε(p(K))) and ΨL = p̂−1(Bε(p(K)))4. One can see 4 Here, Bε(p(K)) denotes the open ball
of radius ε centered about p(K), with a
similar description for Bε(p(L)).

that Bε(p(K))∩Bε(p(L)) = ∅, so that ΨK ∩ΨL = ∅ also holds. More-
over, by (5), we have that (S(K))(ΨK) > 1− ε and (S(L))(ΨL) >

1− ε, from which one can check that d1(S(K),S(L)) > 1− 2ε. That is
to say, S∗d1(K, L) > 1− 2ε, thus yielding a contradiction.

How nice! Given some random sampling model that runs in con-
stant time, we can characterize what graph parameters can be es-
timated up to some accuracy with high probability. Let us look at
some examples next.

Example: Connected Components

We revisit the example of counting connected components, which
we characterize in the following proposition.

Proposition 2. For any ε > 0, there exists no constant time sampling
algorithm S on G such that the number of connected components pCC :
Σ→ R is ε-estimable under S .

Proof. Let S be an arbitrary constant time random sampling map
S : Σ → ΠΣ′, so that Σ′ is finite. Consider the sequence {En}∞

n=1 in G
of empty graphs on n nodes. Since (G,S∗d1) is compact, there exists
a subsequence {Enj}∞

j=1 that converges to some X ∈ G with respect to
the metric S∗d1.

Despite this, the sequence of numbers {pCC(Enj)}∞
j=1 is divergent.

Therefore, pCC : G → R is not continuous, and is thus not (ε, ε)-
uniformly continuous. By Theorem 1, this implies that pCC is not
uniformly estimable under S . Since S was given arbitrarily, this
holds for all constant time random sampling maps S .

As one can see, the non-estimability of the number of connected
components in constant time was reduced down to a statement about
convergent sequences, only appealing to an extremely simple se-
quence of graphs.

Remarks

This short note has discussed some basic ideas regarding the estima-
tion of graph parameters from small subgraphs. In particular, it has
demonstrated the idea of using a sampling algorithm to construct
a pseudometric on the space of graphs, which can then be used to
understand how well parameters can be estimated. In the case where
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the parameter to be estimated is the number of connected compo-
nents, this approach can be used to show that there does not exist a
constant-time estimator.

The discussion of any sampling algorithms in particular has been
largely omitted: however, one can use approaches of this sort to
understand the estimability of certain parameters under particular
sampling models. For instance, it has been shown5 that the normal- 5 Gábor Elek. Betti numbers are testable.

In Fete of Combinatorics and Computer
Science, pages 139–149. Springer, 2010

ized Betti numbers for simplicial complexes with bounded degree
can be estimated from a constant number of random balls sampled
from the complex. For graphs, one might say that the number of con-
nected components divided by the number of nodes is estimable with
a constant number of samples, or even that the cardinality of a cycle
basis for the graph divided by the number of nodes is estimable as
well. This is not too surprising, especially given the chosen coun-
terexample in the proof we constructed. Denoting pCC : Σ → R

the parameter that counts the number of connected components
for graphs of bounded degree, we constructed a convergent (with
respect to the pseudometric S∗d1) sequence of empty graphs such
that {pCC(Enj)}∞

j=1 diverges. However, if we take pN : Σ → R to
be such that pN(K) = pCC(K)/|K0|, where K0 is the set of nodes in
K, we see that pN(En) = 1 for any n. That is to say, the sequence of
{pN(Enj)}∞

j=1 converges immediately. Not to suggest that the removal
of a counterexample constitutes a proof, but this variant gives a taste
of what is going on here.

There are many other avenues for interesting reading here. One
pleasant place to begin is to look at the work of Benjamini and
Schramm6, which talks about sampling “rooted balls” on graphs, 6 Itai Benjamini and Oded Schramm.

Recurrence of distributional limits of
finite planar graphs. In Selected Works of
Oded Schramm, pages 533–545. Springer,
2011

and how convergence can be defined in that sense. This is an inter-
esting approach, as convergence in the Benjamini-Schramm sense for
bounded graphs can be shown to correspond to weak convergence of
the graph spectral distribution, from which many graph parameters
can be approximated, or at least bounded.
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