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Abstract

I would like to emphasize the connection between the Laplace and Fourier transforms in
this document. In particular, we consider how the Laplace transform is a Fourier transform
preceded by exponential regularization, in both the discrete and continuous-time cases.
Then, the relationship between the two is shown in terms of sampling, in the same fashion
as the Fourier transforms.

The goal of this document is not to dig into all of the details, integral expression, and
general calculus of signals and transforms. Rather, the goal is to put the “algebra” of these
transforms front-and-center. Because of this, statements will be made with little regard
for conjugation, time-reversals, or constant factors. The reader should figure out how these
arise through their own studies.

1 Exponentially regularized transforms

1.1 Recalling Fourier

Let us remember the “Four Fourier Transforms.” The Fourier transform and Fourier series is
described in both continuous time and in discrete time, transforming functions in the follow-
ing ways:

(R→ C) FT←→ (R→ C)

(S1 → C) FS←→ (Z→ C)

(Z→ C) FT←→ (S1 → C)

(S1
N → C) FS←→ (S1

N → C).

The continuous-time Fourier transform (CTFT), for instance, maps complex-valued functions
on the real line, to complex-valued functions on the real line. Notationally, this is denoted
(R → C) FT←→ (R → C). Similarly, the discrete-time Fourier transform (DTFT) maps complex-
valued functions on the integers to complex-valued functions on the circle: (Z→ C) FT←→ (S1 →
C).

We claimed that our emphasis is on the algebraic aspects of signal transformations, at the
expense of the analytic/calculative aspects. We will deviate from that briefly to motivate the
Laplace and z-transforms. For the CTFT and DTFT, the Fourier transform is at its best
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when applied to absolutely integrable/summable signals. Indeed, a signal being absolutely
integrable/summable allows for the signal to “periodized” in a well-defined way, allowing us
to derive the CTFT and DTFT from the CTFS and DTFS, respectively.

Not all signals of interest are absolutely integrable. A very simple one is the unit step:

u(t) =

{
1 t ≥ 0

0 t < 0.

The unit step is definitely not integrable! This is due to the fact that it does not decay to
zero as t → ∞; of course, the unit step (very quickly!) attains zero as t → −∞. The only
issue, then, is the heavy tail of the function for large, positive values of t. The method of the
Laplace transform, then, is to regularize these tails in a bijective fashion in order to achieve
integrability.

1.2 Regularized transforms

One class of functions that decays very quickly is the class of real exponentials. For σ > 0, the
function e−σt approaches zero as t → ∞ faster than any rational function (such as, 1/p(t) for
some polynomial p). Because of this, for any σ > 0, the signal u(t)e−σt is absolutely integrable,
and thus has a well-defined CTFT. Moreover, we can recover u(t) from u(t)e−σt, because e−σt ̸=
0 for all t.

This multiplication by e−σt constitutes a sort of lifting parameterized by σ ∈ R. We might
think of the diagram in this way:

(Rt → C) LIFT←→ (Rσ × Rt → C) FT←→ (Rσ × Rω → C).
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Figure 1: A signal f : Rt → C (black) and its lifted ver-
sion LIFT[f ] : Rσ × Rt → C. Each orange curve corre-
sponds to a distinct value of σ < 0, and each blue curve
corresponds to a distinct value of σ > 0.

How should we read this? First,
focus on the rightmost arrow rela-
tion, since that is the most famil-
iar. The set denoted (Rσ × Rt → C)
describes “lifted signals,” which are
functions of both t, σ ∈ R. We find it
useful to distinguish the two, say-
ing that t ∈ Rt and σ ∈ Rσ. The
Fourier transform, then, is taken
only with respect to the t variable,
yielding a family of functions in the
frequency domain that also depend
on σ, denoted (Rσ × Rω → C).

Of course, the functions in (Rσ ×
Rt → C) are not arbitrary: they are
given by exponentials involving σ
being multiplied by signal on R. We
denote this multiplication by LIFT,
illustrated in Fig. 1.
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Looking back to the unit step function from before, we chose an arbitrary σ > 0 and took the
product u(t)e−σt. What LIFT does is compute this product for all values of σ ∈ R.

Exercise 1: Injectivity of LIFT

Convince yourself that for any distinct signals x, y : Rt → C, their lifted versions are
distinct.

We can also define a notion of LIFT for the Fourier domain, that is, a map whose diagram looks
like

(Rω → C) LIFT←→ (Rσ × Rω → C).
To define this in a nice analytical form, we would have to define the Fourier transform of
an exponential e−st and then convolve a function in the Fourier domain with it: that would
require too much work, so we will define LIFT in this setting to be such that it commutes with
the Fourier transform applied to time-domain signals. That is to say, we have the following
commutative diagram:

(Rt → C) (Rσ × Rt → C)

(Rω → C) (Rσ × Rω → C)

LIFT

LIFT

CTFT CTFT

Of course, a lifted signal need not be absolutely integrable for all values of σ. The Fourier
transform, then, is only to be applied for values of σ for which the lifted signal is absolutely
integrable. We won’t worry too much about this, though: this is why we describe a Laplace
transform by including its region of convergence. Before moving on, let us state what the
Laplace transform is at a high level.

Definition 1: The Laplace transform

The Laplace Transform is described by the diagram

(Rt → C) FT◦LIFT←→ (Rσ × Rω → C).

That is, the Laplace transform maps signals (Rt → C) to functions (Rσ × Rω → C).

We see from the description of the Laplace transform as a composition of LIFT and FT that
the part of the domain Rσ is introduced by LIFT, and the part of the domain Rω is the dual to
the time-domain Rt transformed via FT .

Let’s apply a similar method to DT signals. Rather then multiplying by CT exponentials e−st,
we will multiply DT signals by DT exponentials r−n, for positive real numbers r. We ignore
r = 0, since that is trivial. For instance, the DT unit step is

u[n] =

{
1 n ≥ 0

0 n < 0.
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The DT unit step is not absolutely summable, and thus does not have a well-defined Fourier
transform. However, if we choose r > 1, the DT signal u[n]r−n is absolutely summable, and
thus has a well-defined Fourier transform. Once again, this multiplication by r−n constitutes
a lifting parameterized by r ∈ R>0. We will draw the new diagram in this way:

(Z→ C) LIFT←→ (R>0 × Z→ C) FT←→ (R>0 × S1 → C).

Notice the change in domain: because the DTFT has the form (Z → C) ←→ (S1 → C), this is
carried over to our description of the regularized transform in the DT case. In this diagram,
the DTFT is taken with respect to the Z variable in the lifted space. This is what we call the
z-transform, which we describe below.

Definition 2: The z-transform

The z-transform is described by the diagram

(Z→ C) FT◦LIFT←→ (R>0 × S1 → C).

That is, the z-transform maps signals (Z→ C) to functions (R>0 × S1 → C).

The same concerns about convergence for different values of r > 0 hold as in the CT case, and
we will discard those concerns in the same way.

2 Sampling and approximation of regularized transforms

For both the Laplace transform and the z-transform, we have described it by a composition of
the form FT ◦ LIFT. Let us shorten this to LT = FT ◦ LIFT, just to give it an easy name. So,
we have the two statements:

(Rt → C) LT←→ (Rσ × Rω → C)

(Z→ C) LT←→ (R>0 × S1 → C).

Neat! How are the two related? Recall our notion of an approximation map. For example, the
approximation map corresponding to sampling CT signals is denoted

(Rt → C)⇝ (Z→ C).

The corresponding approximation map in the Fourier domain describes “periodization,” which
is convolution with a pulse train:

(Rω → C)⇝ (S1 → C).

The key to our understanding comes from the following commutative diagram for the Fourier
transform:

(Rt → C) (Rω → C)

(Z→ C) (S1 → C)

CTFT

DTFT
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Do we have something similar for the Laplace transform? Of course! If we can build suitable
approximation maps for the lifted signal and Fourier spaces, we get a commutative diagram
for free. What we need are maps of the following type:

(Rσ × Rt → C)⇝ (R≥0 × Z→ C)
(Rσ × Rω → C)⇝ (R≥0 × S1 → C).

This is not too hard: the approximation map for sampling CT signals looks like

(Rσ × Rt → C)⇝ (R≥0 × Z→ C)
x(σ, t) 7→ x[r, n] := x(log r, nT ).

The approximation map in the Fourier domain is defined in a similar way: sending σ to
eσ and taking the periodization of the Fourier transform after multiplying by the relevant
exponential.

Notably, these approximation maps are fully compatible with LIFT, in the sense that the se-
quence of operations

(Rt → C) LIFT←→ (Rσ × Rt → C)⇝ (R≥0 × Z→ C)

is equivalent to
(Rt → C)⇝ (Z→ C) LIFT←→ (R≥0 × Z→ C).

A similar equivalence holds for the approximation and lifting maps in the Fourier domain.

(Rω → C) (Rσ × Rω → C)

(S1 → C) (R≥0 × S1 → C)LIFT

(Rt → C) (Rσ × Rt → C)

(Z→ C) (R≥0 × Z→ C)

LIFT

LIFT

LIFT

Figure 2: Laplace chart: diagonal lines indicate Fourier
transforms, and squiggly lines indicate approximation
maps.

With all of these constructions, we
can glue everything that we have
learned together into one big dia-
gram, shown in Fig. 2. This figure
is a bit shocking at first, and could
perhaps use some color or a more
friendly font to make it less intimi-
dating. We can learn to read it one
step at a time.

First, notice that all of the corners
in the “back” of the diagram corre-
spond to signals in time and their
lifted counter parts. The upper
corners correspond to CT signals,
and the lower corners correspond
to DT signals. The corners in the
“front” of the diagram are simply
the Fourier transform of those sig-
nals in the back: hence, the upper

corners have a real-valued frequency variable, while the lower corners have a circular fre-
quency variable, corresponding to the CTFT and DTFT, respectively.
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The squiqqly arrows denote the approximation maps in time and frequency. To go from CT
to DT, you just take uniform samples. The approximation map in the Fourier domain is a bit
more complicated, as discussed above.

3 Properties of the Laplace/z-transforms

In any sufficiently thorough study of the Laplace and z-transforms, there will be a table of
properties discussing the properties of the region of convergence (ROC) of these transforms.
If you are lucky, it might even be explained to you that they have something to do with one
another. Let us go through a few of the usual properties, and see how they fit in to our
discussion of lifting and sampling.

The first property of the ROC of the Laplace/z-transform is the following:

Property 1: Shape of the ROC

The ROC of X(s) consists of vertical strips in the s-plane. Similarly, the ROC of X(z)
consists of rings centered about the origin (annuli) in the z-plane.

These two statements give us an idea of what diagrams showing the ROC usually look like.
If we think of DT signals x[n] as being approximations of CT signals x(t) that are related by a
sampling map, we know that it is natural to associate their Fourier transforms via a sampling
map, too (where sampling in the Fourier domain is done by periodization). As Fig. 2 tells us,
the lifted version of the Fourier transform also yields a relation between the s-plane and the
z-plane.

Paying attention only to how LIFT transforms the Rσ variable, the transformation is given
by σ 7→ eσ. That is to say, we can interpret the z-plane as the exponential of the s-plane, at
least as far as the real axis is concerned. Since the imaginary axis in the s-plane corresponds
to the frequency variable of the CTFT, our transformation between the s-plane and z-plane
should resemble the periodization approximation map. It fortunately does: periodization of a
frequency parameter ω essentially wraps ω around the unit circle, which is does via the map
sending ω to ejω.

Noting that the s variable in the Laplace transform is typically decomposed as s = σ + jω, we
see that es = eσ · ejω. The first term in the product is the real part of z (the magnitude), while
the second part is the frequency variable of the DTFT.

Let us return to our property. Take the property of the ROC in the s-plane consisting of
vertical strips as a given.

Exercise 2: Exponential of a vertical strip

Let V be a vertical strip in the s-plane. What is eV shaped like in the z-plane?

I leave the derivations for the other properties of the Laplace and z-transforms as an exercise.
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4 The lesson, and some takeaways

The Laplace and z-transform are very useful tools in the analysis of LTI systems, and are
worthy objects of study on account of that alone. However, their use in analyzing signals that
are difficult to grok using bare Fourier analysis teaches an important lesson. Returning to the
example of the unit step: since it is not integrable, the Fourier transform does not exist using
the direct definition. That is, the following integral does not converge in the usual sense:

û(ω) =

∫ ∞

0
e−jωtdt.

Instead of throwing our hands up in the air, we can indirectly perform the Fourier transform,
by sneaking in a regularizing term. In the case of the Laplace and z-transforms, this regular-
izing term is an exponential with suitable decay properties to ensure integrability. The more
poorly-behaved the signal being analyzed is, the more regularization is required.

This approach can be used to make some bold claims, as long as you are willing to place
qualifiers on those claims. I leave the following exercise based on this idea:

Exercise 3: CTFT of the unit step

Take the Laplace transform of the unit step u(t). By taking σ → 0+, argue that the
Fourier transform of the unit step is given by û(ω) = 1

jω , ignoring the singularity at
ω = 0.

Note that this claim agrees with how we usually think of the Fourier transform of the unit
step by using the convolution theorem, even though the Fourier transform as defined directly
doesn’t necessarily exist. By using regularization, we can indirectly define these behaviors,
which usually hold when applied in sufficiently nice situations.
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