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Abstract

We consider the role of the graph shift operator in graph signal pro-
cessing [3]. Typically, the graph shift operator is assumed to be given to us
by default, often following some well-known rule that reflects the graph
structure (the adjacency matrix, or the Laplacian, for instance). In this doc-
ument, we seek to uncover what makes a graph shift operator ‘tick,’ by
proposing a few useful invariants and properties that could prove useful
in justifying the use of certain operators over others.

Familiarity with basic definitions in graph signal processing is assumed.
This informal note reflects many authors who have considered the roles
of locality, equivariance, and substructures in graph processing architec-
tures [2, 4, 1], among others.
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In graph signal processing, we consider finite graphs G = (V, E) and sig-
nals on graphs x : V → R. Denote by X(G) the set of all graph signals, i.e.,
X(G) = {x : V → R}. Via identification with R|V|, we endow X(G) with the
usual Hilbert space structure. It is typical to speak of a graph shift operator,
which is merely a linear map S : X(G) → X(G) that operates in some local
way. Typically, S is thought of as a matrix indexed by the pairs of nodes, so
that for some x ∈ X(G) and any v ∈ V, S acts as follows:

[Sx]v = ∑
u∈N(v)

[S]vu[x]u. (1)

That is to say, S takes linear combinations of the signal on the immediate neigh-
borhood of each node. The typical idea is to say that S is some kind of model
for basic diffusion on a graph, in a way that acts strictly locally and without
regard to node ordering or other arbitrary choices.

This is not quite satisfying, though. Without demanding more structure,
one can easily construct a whole gamut of shift operators that don’t make much
sense.

Example 1. (Triangle-weighted adjacency matrix) For a graph G = (V, E), let
t(G, ∆) be the homomorphism density of triangles in G (oft-computed as the
trace of the cubed adjacency matrix divided by (2|V|)!). Define the triangle-
weighted adjacency matrix as the operator A∆ : X(G) → X(G) with the fol-
lowing rule. For u, v ∈ V, define

[A∆]uv =

{
1/t(G, ∆) (u, v) ∈ E
0 otherwise.

(2)

See that the triangle-weighted adjacency matrix is merely a scalar multiple
of the typical adjacency matrix, where one merely divides by the density of tri-
angles in the graph. In this sense, the shift operator A∆ is purely local, as it acts
in the same way as the adjacency matrix, i.e., only over local neighborhoods.
However, this is a ridiculous choice of shift operator! Looking at it, applying
this rule in defining this shift operator yields different responses to local struc-
tures depending on the global structure of the graph. What is even worse is that
this shift operator satisfies the basic properties such as permutation equivari-
ance that are adored by graph signal processors.

Although this is a silly example, constructions such as this one indicate the
need for more restrictive notions of “graph shift operator.” Before proceeding,
let us also highlight the issue of “locality.” What follows is the most non-local
linear map on the space of graph signals.

Example 2. (Global averaging shift) For any graph G = (V, E), define the
global average shift operator as the matrix 1

|V| J, where J is the all-ones matrix.

For a more subtle example, let us consider the symmetric normalized adja-
cency matrix.
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Example 3. (Symmetric normalized adjacency matrix) For a graph G = (V, E),
let A be the adjacency matrix, and D be the diagonal matrix of node degrees
(assuming there are no isolated nodes). Define the symmetric normalized ad-
jacency matrix Ã : X(G)→ X(G) as the matrix Ã =

√
D−1 A

√
D−1.

The symmetric normalized adjacency matrix is local in the sense that it does
not depend on global features of the graph (such as triangle homomorphism
densities), and it appears to perform local computations, but I would argue
that this operator is less local than it seems. Observe that the computation at a
given node can not be determined strictly by the structure of its one-hop neigh-
borhood. This is due to the normalization by node degrees: since the degrees
of nodes in the neighborhood of a given node depend on the structure of the
two-hop neighborhood of that node, the symmetric normalized adjacency ma-
trix actually depends on the two-hop neighborhood, even if it only uses signal
values from the one-hop neighborhood.

Or even more blatantly, some authors use higher-order neighborhood adja-
cency matrices.

Example 4. (K-hop adjacency matrix) For a graph G = (V, E) and integer K ≥
0, let AK be the shift operator such that for all v, u ∈ V,

[AK]vu = 1(u in K-hop neighborhood of v). (3)

The K-hop adjacency matrix is clearly not local in the 1-hop sense, but is
kind of local in the sense that it does not necessarily depend on global graph
structure. Should this even be considered a graph shift operator? Let’s find
out!
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1 A MILIEU OF MOTIFS

1 A milieu of motifs

We will now develop the basic machinery to help characterize the local prop-
erties of graph shift operators. Let G = (V, E) be a graph.

1.1 Rooted balls

For any integer K ≥ 0, and any node v ∈ V, the rooted K-ball centered at v is
the graph GK(v) = (NK(v), E∩NK(v)×NK(v)) with v marked as the root, i.e.,
the induced subgraph of the K-hop neighborhood of v.

For two graphs G = (V, E), G′ = (V′, E′) and some K ≥ 0, if there exists a
map φ : V → V′ such that, for all v ∈ V, the rooted balls GK(v) and G′K(φ(v))
are isomorphic to each other, we say that φ is a K-morphism in the sense of
rooted balls. If the two graphs have associated signals, x ∈ X(G), x′ ∈ X(G′),
then we also demand that the signal structure is preserved by K-morphisms
as well, i.e., for any rooted K-ball in G, the corresponding rooted K-ball in G′

under the map φ has the same signal on it.

1.2 Rooted trees

For any integer K ≥ 0, and any node v ∈ V, the rooted K-tree centered at v is
a less descriptive object than the rooted K-ball centered at v. It is constructed
in the following way: define U0 = {v}. Then, for k < K and any u ∈ Uk, let
the children of u be given by the neighbors of u in G, excluding u itself. Let
Uk+1 be comprised of all children of nodes in Uk, and Fk ⊆ Uk ×Uk+1 the set of
directed edges that satisfy the parent-child relationship stated above. Finally,
put U = äK

k=0 Uk, and F = äK−1
k=0 Fk, where ä denotes the disjoint union.1

Denote the tree constructed in this way by Tk(v) = (U, F).
We define a similar notion of K-morphism for rooted trees. For two graphs

G = (V, E), G′ = (V′, E′) and some K ≥ 0, if there exists a map φ : V → V′

such that, for all v ∈ V, the rooted balls TK(v) and T′K(φ(v)) are isomorphic
to each other, we say that φ is a K-morphism in the sense of rooted trees. If
the two graphs have associated signals, x ∈ X(G), x′ ∈ X(G′), then we also
demand that the signal structure is preserved by K-morphisms as well.

One can check that if φ : V → V′ is a K-morphism in the sense of rooted
balls, then it is also a K-morphism in the sense of rooted trees, but not vice-
versa. This is what was meant by “the rooted K-tree is a less descriptive object
than the rooted K-ball.”

We illustrate the notion of “rooted ball” and “rooted tree” in Fig. 1.

1We use the disjoint union, as there may be repeated copies of the same node.
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Figure 1: Rooted balls and rooted trees. (Top left) A graph G with associated
graph signal x denoted by the node coloring. (Top right) Rooted K-balls with
signal centered at node a for K = 0, 1, 2. Observe that GK(a) ∼= GK+1(a) for all
K ≥ 2. (Bottom) Rooted K-trees with signal centered at node a for K = 0, 1, 2, 3.
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2 PERMUTATION/MORPHISM EQUIVARIANCE

2 Permutation/Morphism Equivariance

Two key features of graph shift operators that are often appealed to are as fol-
lows: locality and symmetry. In the examples given in the introduction, we
showed how a graph shift operator could be symmetric, and even appear to
act locally, but still use global information, and how a graph shift operator
could use higher-order neighborhoods than expected. We wish to characterize
classes of graph shift operators based on the machinery of K-morphisms in the
sense of either rooted balls or rooted trees. Let us start with a basic definition.

Definition 1. (Graph shift operator) A graph shift operator S is a rule that
assigns to any graph G a corresponding linear map S(G) : X(G)→ X(G).

This is the most generic definition for a (linear) graph shift operator: it
makes no demands on equivariance, locality, or any other related property. All
that is required is for it to be a linear map from the space of graph signals to the
space of graph signals.2 If one is so inclined, one might start thinking of graph
shift operators as functors from some suitably defined category of graphs to a
category of endomorphisms of graph signals that preserves the right kinds of
structures, but this is not necessary for our purposes.

We now define properties of graph shift operators with the hope of narrow-
ing down to something that feels right. We begin with the usual property of
permutation equivariance.

Property 1. (Permutation equivariance) Let two graphs G = (V, E) and G′ =
(V′, E′) with associated signals x ∈ X(G) and x′ ∈ X(G′) be given arbitrar-
ily. A graph shift operator S is said to be permutation equivariant if for any
such graphs, if there exists a signal-preserving isomorphism φ : V → V′, then
[S(G)x]v = [S(G′)x′]φ(v) for all v ∈ V′. Denote the set of all permutation equiv-
ariant shift operators by PERM.

Most graph shift operators one would think of satisfy this property, unless
something strange such as using node numberings is done. Shift operators
such as the global averaging shift operator satisfy this as well. We now re-
fine this definition to take locality into account, starting with rooted balls and
extending it to rooted trees.

Property 2. (Ball-equivariance) Let two graphs G = (V, E) and G′ = (V′, E′)
with associated signals x ∈ X(G) and x′ ∈ X(G′) be given arbitrarily. A
graph shift operator S is said to be K-ball equivariant if for any such graphs,
if a map φ : V → V′ is a K-morphism in the sense of rooted balls, then
[S(G)x]v = [S(G′)x′]φ(v) for all v ∈ V′. Denote the set of all K-ball equivariant
shift operators by BALL(K).

If a shift operator is such that this property always holds for a pair of graphs
with a K-morphism where K is sufficiently large but not fixed,3 we say that it
is ∞-ball equivariant, and denote the set of such operators by BALL(∞).

2One could also call such a map an endomorphism.
3That is, K is allowed to vary based on the graphs at hand
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2 PERMUTATION/MORPHISM EQUIVARIANCE

Property 3. (Tree-equivariance) Let two graphs G = (V, E) and G′ = (V′, E′)
with associated signals x ∈ X(G) and x′ ∈ X(G′) be given arbitrarily. A
graph shift operator S is said to be K-tree equivariant if for any such graphs,
if φ : V → V′ is a K-morphism in the sense of rooted trees, then [S(G)x]v =
[S(G′)x′]φ(v) for all v ∈ V′. Denote the set of all K-tree equivariant shift opera-
tors by TREE(K).

If a shift operator is such that this property always holds for a pair of graphs
with a K-morphism where K is sufficiently large but not fixed,4 we say that it
is ∞-tree equivariant, and denote the set of such operators by TREE(∞).

With this taxonomy of graph shift operators, we can now organize them
based on how these properties relate to one another.

Proposition 1. The following holds for all K ≥ 0.

1. TREE(K) ⊆ BALL(K) ⊆ PERM

2. BALL(∞) = TREE(∞) = PERM

3. BALL(K) ⊆ BALL(K + 1)

4. TREE(K) ⊆ TREE(K + 1)

We will not go through the trouble of proving this in detail, but a brief
explanation is offered below.

1. Since K-morphisms in the sense of rooted balls are also K-morphisms in
the sense of rooted trees, we have TREE(K) ⊆ BALL(K). Graph isomor-
phisms are special types of K-morphisms in the sense of rooted balls, so
BALL(K) ⊆ PERM.

2. It is clear from the above argument that TREE(∞) ⊆ BALL(∞) ⊆ PERM.
Observe that graph isomorphisms are K-morphisms in the sense of rooted
trees for K equal to the maximum of the diameters of the two graphs in
question, so that PERM ⊆ TREE(∞).

3. Clearly, K+ 1-morphisms in the sense of rooted balls are also K-morphisms
in the sense of rooted balls.

4. Clearly, K+ 1-morphisms in the sense of rooted trees are also K-morphisms
in the sense of rooted trees.

4Once again, this means that K is allowed to vary based on the graphs at hand
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3 WHAT DOES THIS MEAN FOR LOCALITY?

Shift LOCAL(K) TREE(K) BALL(K) PERM

A K = 1 K = 1 K = 1 3
A∆ K = 1 7 7 3

Ã K = 1 K = 2 K = 2 3
AK K = K 7 K = K 3

1
|V| J 7 7 7 3

Table 1: Properties of shift operators

3 What does this mean for locality?

One common definition of a graph shift operator that one sees in the literature
is: a matrix whose sparsity pattern matches that of the graph it represents.
By no means! This reduces the rich combinatorial structure of a graph down
to nothing more than a sparse matrix. We define another property of a shift
operator to think about locality.

Property 4. (Locality) A graph shift operator S is said to be K-local if for any
graph G = (V, E), and any v, u ∈ V, [S(G)]vu 6= 0 only if u is in the K-hop
neighborhood of v. Denote the set of all K-local shift operators by LOCAL(K).

For instance, LOCAL(0) consists of diagonal matrices, and LOCAL(1) con-
sists of matrices that match the sparsity pattern of the graph. Since rooted balls
and rooted trees are inherently local objects, one would suspect that they are
related to the property of locality.

Proposition 2. BALL(K) ⊆ LOCAL(K) for all K ≥ 0. Therefore, it also holds that
TREE(K) ⊆ LOCAL(K).

With this final classification settled, we categorize some of our example shift
operators according to these properties in Table 1.

One reason that locality is so useful is that it gives us an idea of how graph
filters behave when constructed from a graph shift operator. Since a graph filter
is just a matrix polynomial, and matrix polynomial have matrix multiplication
as their basic building block, we make the following simple claim.

Proposition 3. (Locality of composition) Let K, L ≥ 0 be given, and let S, S′ be graph
shift operators. Then, for any property P(K) ∈ {LOCAL(K),TREE(K),BALL(K)},
if S ∈ P(K) and S′ ∈ P(L), then (SS′) ∈ P(K + L), where

(SS′)(G) := S(G)S′(G) (4)

is defined via composition of linear maps (matrix multiplication). Moreover, if S, S′ ∈
PERM, then (SS′) ∈ PERM.
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